Thun Given
$$p \in S$$
, there is an $\varepsilon > 0$ such that
For all $w \in T_p S$ with $|w| < \varepsilon$, $w w$ exists for
time 1, and $w(i)$ depends substity on w .
Key Leana: As larg as both exist, $w(t) = w(rt)$
 roo .
 Γ let $\beta(t) = w(rt)$. Then $\beta'(t) = r w'(rt)$, so
 $D_{\varepsilon} = D_{\varepsilon v}(rt)$. Then $\beta'(t) = r w'(rt)$, so
 $D_{\varepsilon} = D_{\varepsilon v}(rt) = r^2 D_{w'} w' = 0$
 $\delta = p$
So by uniqueness of geodesics, $\beta = K_r w$,
i.e. $K_rw(t) = \beta(t) = K_w(rt)$

Proof of theorem:
T By EDDIC with w=0,
$$\exists S, \varepsilon_2$$
 such that
 $K_{w}(b)$ exists and depends smoothly on w For all
 $|W| < S$ and $Octo \varepsilon_2$. Then for all $|W| < \frac{S\varepsilon_2}{2}$
 $d_{w}(l) = d_{\frac{2w}{\varepsilon_2}} (\frac{\varepsilon_1}{2}) \qquad \left|\frac{2w}{\varepsilon_2}\right| < S$
which depends smoothly on w.
DEN The exponential map of S of p is the
map $e_{R_e}: U \longrightarrow S$ sending w to $K_w(l)$,
 T_eS subst
where U is the open 1 of we Top S for which
 K_w exists for time greater than 1.
We'll calculate $d(e_{R_e})_{o}(v)$. This is a linear
 $map T_o(w) \longrightarrow T_{e_{R_e}} S$. To calculate \tilde{r}_{l_1}
we need a curve $v(t)$ in U; take $v(t) = tv$.

Then

$$\begin{aligned}
\mathcal{L}(exp_{p})_{o}(v) &= \frac{d}{dt} | exp_{p}(tv) = \frac{d}{dt} |_{t=0} \mathcal{K}_{tv}(t) \\
&= \frac{d}{dt} |_{t=0} \mathcal{K}_{v}(t) \\
&= \sqrt{dt} |_{t=0} \mathcal{K}_{v}(t)
\end{aligned}$$

- Levi- Civia connection

-Lewgth/Georgy wirdinizers are geodecies
(collectics and litetome)
Suppose (M,g) is trem, and
$$\nabla$$
 is a metric connection
IF 8: I -> M windmizers length between its endparts,
then \forall extrusions 8: (-2, E) × I -> M w/ $\operatorname{Kel}_{0,I} = \operatorname{Vol}_{0,I}$ ($\operatorname{Vol}_{0,I} = \operatorname{Vol}_{0,I} = \operatorname{Vol}_{0,I}$)
 $d_{S} L(\chi_{S}) = O$
 $O = \frac{d}{dS} \int \overline{V(\chi_{S},\chi)} dt = \int \langle \nabla_{S}\chi_{S}\chi_{S} \rangle + \langle \nabla_{S}\chi_{S} - \chi_{S}\chi_{S} \rangle + \langle \nabla_{S}\chi_{S} - \chi_{S}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S} - \chi_{S}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S} - \chi_{S}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S}\chi_{S} \rangle + \langle \nabla_{I}\chi_{S} \rangle +$

- Guudis lemma

$$r: \mathcal{W} \longrightarrow \mathcal{R}$$

 $[F qott, U would ubd, $F: U \longrightarrow L$ is $F_{q}(g) = r(exp^{-1}(g_{g}))$.
 $\underline{low} | U_{q}| = 1$.
 $\underline{low} | u_{q}| = \frac{x^{2}}{2\pi}$ realisation of \mathcal{R}_{q} and $\mathcal{W} = 0$.
 $\underline{low} | u_{q}| = \frac{x^{2}}{2\pi}$ realisation $U.$
 $\underline{low} | g_{12}| = 1$
 $r = \frac{x^{2}}{2\pi} g(\pi_{12}\pi) = 2g(\pi_{12}\pi, \pi) = 0$
 $\lim_{r \to 0} g(2\pi, 2\pi) = \frac{x^{2}}{2\pi} \frac{x^{2}}{2\pi} (G_{12}) = 0(1) = 1$
 $\underline{low} | g(2\pi, 2\pi) = \frac{x^{2}}{2\pi} \frac{x^{2}}{2\pi} g(2\pi, 2\pi) = 0$
 $\lim_{r \to 0} g(2\pi, 2\pi) = \frac{x^{2}}{2\pi} \frac{x^{2}}{2\pi} g(2\pi, 2\pi) = 0$
 $\lim_{r \to 0} g(2\pi, 2\pi) = \frac{x^{2}}{2\pi} \frac{x^{2}}{2\pi} g(2\pi, 2\pi) = 0$
 $\lim_{r \to 0} g(2\pi, 2\pi) = \frac{x^{2}}{2\pi} \frac{x^{$$

- (al mation againsut = geoletics are locally university,